Def Let X be a set and T a collection of
subsets of X. We say Z is a topology on X
if and the second secon
n) Ø, X ET
2) U1,, Un EZ => î Ui EZ
3) {Ui}iei cZ => UU; EZ
We say an element in t is an open set.
e.q trivial topology: Z= {\$, X}
discrete topology: C=P(x) (power set of x)
(i.e. any ACX => AEZ)
Def Let (X,z) be a topological space. Then for any UET, UC is called a closed set
Def let (X.Z) be a topological space and ACX.
The interior of A is the largest open set
contained in X. The closure of A is the
Smallest closed set containing A.
$A := int(A) := UU \overline{A} := cl(A) := \bigcap S$
UET S'ET UCA ACS

Def Let X be a set and B a collection of	
subsets of X s.t.	
I) X = U B Bep	
2) If $B_1, B_2 \in \beta$, then for $X \in B_1 \cap B_2$, there	
is B3 CB sit XEB3 and B3 CB1 (B2	2
Then $T: \{ U : U = \bigcup_{i \in I} B_i \text{ for any sub-collection}$	4
Bilier CBS	
is a topology on X and B is called a basis	
of T (and T is called a topolog generated by	(م
e.g. The standard topology on IR is a topolog	>
generated by a basis { (a,b) : a,b & IR	3
Def Let (x,z) be a topological space and	
YCX. Then	
7y:= { YNU : UET }	
is a topology on Y and called the subspace	
topology on Y	

Def Let (X, z) and (Y, 6) be topological
spaces. Then
$$\beta := z \times 6 = \{ \cup \times \vee : \cup \in z, \vee \in 6 \}$$

is a basis for a topology on $\times \times Y$.
This topology is called the product topology
of (X, z) and (Y, 6)

Def	Let	(×	C) be a	topo	ologica	d spac	e and
(×1	, [∞]	۵	sequence	in X	. We	say	2Ca Converges
to	x	41	for any	open	set	UCX	containing
x,	there	Ì <i>S</i>	N 70	S.t	χ _n ε	U for	n7N.

C.g. In the trivial topology (X, C= { d, X })

any sequence converses to any point.

In the discrete topology, any sequence does not
Converge.

Def A topological space (X,Z) is called Hausdorff if for any X, YEX, there are open sets Uz and Uy (X+Y) containing I and y respectively, s.t. Ux n Uy = \$.

Prop In a Hausdorff Space, if there is a limit of a sequence, it is unique.

e.g. The trivial topology is not Hausdorff. The discrete topology is Hausdorff.

Def Let (X, Z) be a topological space and ACX. A limit point (= cluster point, accumulation point) of A is a point XEX S.t any open set containing Z contains a point in A which is different from Z Standard topology e.g (IR, Zstd), A= { 1 : n EIN }, O is the limit pt ot A.

Def Let (X.L) be a topological space. A sat ACX is compact if for any collections of open sets iuilier sit. ACUUi, there is a finite subcollection ? Ui, ..., Uin ? C {Ui? S.L AC ÜUir

Prop In (IR", Tstd), a set ACIR" is compact
if and only if A is closed and bounded,
Def Let (X,6) be a topological space. A set
ACX is disconnected if there is a two
open sets U, VCX s.t UnV=& UUV=A.
If A is not disconnected we call it connected
Def Suppose (X.Z) and (Y.L) are topological spaces
Then f: X -> Y is Continuous if
f ⁻¹ (U) is open in X for any open set
U in Y
Prop Suppose f: (X, z) -> (Y, 6) is a continuous
function. Then
1) for any closed set CCY f ⁻¹ (C) is closed
2) for any compact set ACX flA) is compact
3) for any connected set ACX f(A) is connected
4) If f,g: X-Y are continuous, then (f,g): (X×X)->(Y=Y)
is also Continuous.

e.g (topologist's sine curve)
A B
C is connected :
DA is connected (exercise)
3 B is connected : B is the image of
$f: (0, \infty) \rightarrow R \times IR f(z) = (z, sin \pm)$
Since f is continuous and (0, a) is connected,
B is connected.
(3) AUB is connected : Since any open set
Containing A intersects B (exercise)
there is no open sets U, V s, t. ACU BCV
and UNV = # AUB is connected.