Def. Let \(X \) be a set and \(\mathcal{Z} \) a collection of subsets of \(X \). We say \(\mathcal{Z} \) is a topology on \(X \) if

1) \(\emptyset, X \in \mathcal{Z} \)
2) \(\bigcup_{i \in I} U_i \in \mathcal{Z} \) if \(U_i \in \mathcal{Z} \) for all \(i \in I \)
3) \(\bigcap_{i \in I} U_i \in \mathcal{Z} \) if \(U_i \in \mathcal{Z} \) for all \(i \in I \)

We say an element in \(\mathcal{Z} \) is an open set.

E.g. trivial topology: \(\mathcal{Z} = \{ \emptyset, X \} \)
discrete topology: \(\mathcal{Z} = \mathcal{P}(X) \) (power set of \(X \))

Def. Let \((X, \mathcal{Z})\) be a topological space. Then for any \(U \in \mathcal{Z} \), \(U^c \) is called a closed set.

Def. Let \((X, \mathcal{Z})\) be a topological space and \(A \subset X \).
The interior of \(A \) is the largest open set contained in \(X \). The closure of \(A \) is the smallest closed set containing \(A \).

\[
\overline{A} := \text{cl}(A) := \bigcap_{S \in \mathcal{Z}, S \supseteq A} S \\
\text{int}(A) = \bigcup_{U \in \mathcal{Z}, U \subseteq A} U
\]
Def: Let \(X \) be a set and \(\beta \) a collection of subsets of \(X \) s.t.

1) \(X = \bigcup_{B \in \beta} B \)

2) If \(B_1, B_2 \in \beta \), then for \(x \in B_1 \cap B_2 \), there is \(B_3 \in \beta \) s.t. \(x \in B_3 \) and \(B_3 \subset B_1 \cap B_2 \)

Then \(\tau = \{ U : U = \bigcup_{i \in I} B_i \text{ for any subcollection } \{ B_i : i \in I \} \subset \beta \} \) is a topology on \(X \) and \(\beta \) is called a basis of \(\tau \) (and \(\tau \) is called a topology generated by \(\beta \)).

E.g. The standard topology on \(\mathbb{R} \) is a topology generated by a basis \(\{ (a,b) : a, b \in \mathbb{R} \} \)

Def: Let \((X, \tau)\) be a topological space and \(Y \subset X \). Then

\[\tau_Y = \{ Y \cap U : U \in \tau \} \]

is a topology on \(Y \) and called the subspace topology on \(Y \).
Def Let \((X,\tau)\) and \((Y,\sigma)\) be topological spaces. Then \(\beta := \mathbb{R} \times \mathbb{R} = \{u \times v : u \in \mathbb{R}, v \in \mathbb{R}\}\) is a basis for a topology on \(X \times Y\). This topology is called the product topology of \((X,\tau)\) and \((Y,\sigma)\).

Def Let \((X,\tau)\) be a topological space and \((x_n)_{n=1}^{\infty}\) a sequence in \(X\). We say \(x_n\) converges to \(x\) if for any open set \(U \subset X\) containing \(x\), there is \(N \geq 0\) s.t. \(x_n \in U\) for \(n \geq N\).

- \(x_1, x_2, \ldots, x_n\)
- \(x\)

E.g. In the trivial topology \((X,\tau) = \{\emptyset, X\}\), any sequence converges to any point.

- In the discrete topology, any sequence does not converge.

Def A topological space \((X,\tau)\) is called Hausdorff if for any \(x,y \in X\), there are open sets \(U_x\) and \(U_y\) with \(x \in U_x\) and \(y \in U_y\) such that \(U_x \cap U_y = \emptyset\).
containing x and y respectively, s.t. $U_x \cap U_y = \emptyset$.

Prop In a Hausdorff space, if there is a limit of a sequence, it is unique.

e.g. The trivial topology is not Hausdorff.
The discrete topology is Hausdorff.

Def Let (X, τ) be a topological space and $A \subseteq X$. A limit point (clustering point, accumulation point) of A is a point $x \in X$ s.t. any open set containing x contains a point in A which is different from x.

- Standard topology

e.g. $(\mathbb{R}, \text{standard})$, $A = \{ \frac{1}{n} : n \in \mathbb{N} \}$, 0 is the limit pt of A.

Def Let (X, τ) be a topological space. A set $A \subseteq X$ is compact if for any collections of open sets $\{ U_i \}_{i \in I}$ s.t. $A \subseteq U_i$, there is a finite subcollection $\{ U_{i_1}, \ldots, U_{i_n} \} \subseteq \{ U_i \}$ s.t. $A \subseteq \bigcup_{k=1}^{n} U_{i_k}$.

Prop In \mathbb{R}^n, a set $A \subseteq \mathbb{R}^n$ is compact if and only if A is closed and bounded.

Def Let (X, τ) be a topological space. A set $A \subseteq X$ is disconnected if there is a two open sets $U, V \subseteq X$ s.t. $U \cap V = \emptyset$ and $U \cup V = A$. If A is not disconnected we call it connected.

Def Suppose (X, τ) and (Y, σ) are topological spaces. Then $f : X \to Y$ is continuous if

$f^{-1}(U)$ is open in X for any open set U in Y.

Prop Suppose $f : (X, \tau) \to (Y, \sigma)$ is a continuous function. Then

1) for any closed set $C \subseteq Y$, $f^{-1}(C)$ is closed.
2) for any compact set $A \subseteq X$, $f(A)$ is compact.
3) for any connected set $A \subseteq X$, $f(A)$ is connected.
4) If $f, g : X \to Y$ are continuous, then $(f \circ g) : (X \times X) \to (Y \times Y)$ is also continuous.
e.g. (topologist's sine curve)

\[C = \{ (0, y) : y \in [-1, 1] \} \cup \{ (x, \sin \frac{1}{x}) : x \in (0, \infty) \} \]

\(A \quad B \)

\(C \) is connected:

1. \(A \) is connected (exercise)
2. \(B \) is connected; \(B \) is the image of
 \[f : (0, \infty) \to \mathbb{R} \times \mathbb{R} \quad f(x) = (x, \sin \frac{1}{x}) \]
 Since \(f \) is continuous and \((0, \infty)\) is connected, \(B \) is connected.
3. \(A \cup B \) is connected: Since any open set containing \(A \) intersects \(B \) (exercise), there is no open sets \(U, V \) s.t. \(A \cup U \subset B \subset V \) and \(U \cap V = \emptyset \), \(\therefore A \cup B \) is connected.