GRE Math Subject Prep Course: Abstract Algebra

July 12, 2021

1. (Exam VI Prob 28) $)^{1}$ Let the binary operation \circ be defined on all integers by $a \circ b=a+b+a b$. Which of the following statements are true?
I. \circ is associative.
II. \circ is commutative.
III. For every integer a, there is an integer inverse a^{-1} such that $a \circ a^{-1}=1$.
(A) I only
(B) II only
(C) I and II only
(D) III only
(E) none of the above
2. (Chapter 6 Prob 10$)^{2}$ If $S=\left\{a \in \mathbb{R}^{+}: a \neq 1\right\}$, with the binary operation \circ defined by the equation $a \circ b=a^{\log b}$ (where $\log b=\log _{e} b$), then (S, \circ) is a group. What is the inverse of $a \in S$?
(A) $\frac{1}{e \log a}$
(B) $\frac{e}{\log a}$
(C) $e^{-\log a}$
(D) $e^{\log (1 / a)}$
(E) $e^{1 / \log a}$
3. (Exam V Prob 36) Which of the following are groups?
I. All integers under subtraction
II. All non-zero real numbers under division
III. All even integers under addition
IV. All integers which are multiples of 13 under addition
(A) I and II only
(B) II and III only
(C) III only
(D) IV only
(E) III and IV only
4. (Chapter 6 Prob 8) If G is an Abelian group of order 12, then G must have a subgroup of all the following orders EXCEPT
(A) 2
(B) 3
(C) 4
(D) 6
(E) 12

[^0]5. (Exam I Prob 5) The number of generators of the cyclic group of order 8 is
(A) 6
(B) 4
(C) 3
(D) 2
(E) 1
6. Which one of the following groups is cyclic?
(A) $\mathbf{Z}_{2} \times \mathbf{Z}_{4}$
(B) $\mathbf{Z}_{2} \times \mathbf{Z}_{6}$
(C) $\mathbf{Z}_{3} \times \mathbf{Z}_{4}$
(D) $\mathbf{Z}_{3} \times \mathbf{Z}_{6}$
(E) $\mathbf{Z}_{4} \times \mathbf{Z}_{6}$
7. (Exam III Prob 18) Let G be a group, and $a \in G$ is some fixed element. The mapping $\phi: G \rightarrow G$ is given by $\phi(g)=a^{2} g a^{2}$ for every element $\phi \in G$. Then ϕ is a homomorphism if
(A) $a^{4}=e$
(B) $a^{3}=e$
(C) $a g=g a, \forall g \in G$
(D) G is abelian
(E) G is finite
8. (Exam I Prob 36) Up to isomorphism, how many Abelian groups are there of order 36 ?
(A) 1
(B) 4
(C) 9
(D) 12
(E) 18
9. (Exam VI Prob 24) Let $U=\{0,1, c\}$ be a ring with three elements (1 is the unity). Which statements are true?
I. $1+1+1=0$
II. $1+1=c$
III. $c^{2}=1$
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II and III
10. (Exam III Prob 6) Find the characteristic of the ring $\mathbf{Z}_{2} \oplus \mathbf{Z}_{3}$.
(Note: the characteristic of a ring R is the smallest positive number n such that $\underbrace{1+1+\ldots+1}_{n \text { times }}=0$, where 1 denote the multiplicative identity element of the ring R.)
(A) 0
(B) 6
(C) 3
(D) 4
(E) 2
11. (Exam II Prob 62) Let R be a ring, and let $x \neq 0$ be a fixed element in R. Which of the following is a subring of R ?
(A) $\{r \in R: x r=0\}$
(B) $\left\{r \in R: r^{-1}\right.$ exists in $\left.R\right\}$
(C) $\left\{x^{n}: n=1,2,3 \ldots\right\}$
(D) $\{n x: n$ is an integer $\}$
(E) Both (A) and (D)
12. (Exam II Prob 27) Let R be a ring such that $x^{2}=x$ for each $x \in R$. Which of the following must be true?
(A) $x=-x$ for all $x \in R$
(B) R is commutative
(C) $x y+y x=0, \forall x, y \in R$
(D) Both (A) and (C)
(E) (A), (B) and (C)
13. (Chapter 6 Prob 14) Let H be the set of all group homomorphisms $\phi: \mathbf{Z}_{3} \rightarrow \mathbf{Z}_{6}$. How many functions does H contain?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 6
14. (Chapter 6 Prob 20) Which of the following are subfields of \mathbb{C} ?
I. $K_{1}=\{a+b \sqrt{2 / 3}: a, b \in \mathbb{Q}\}$
II. $K_{2}=\{a+b \sqrt{2}: a, b \in \mathbb{Q}$ and $a b<\sqrt{2}\}$
III. $K_{3}=\{a+b i: a, b \in \mathbb{Z}$ and $i=\sqrt{-1}\}$
(Note: \mathbb{C} is the set of complex numbers, \mathbb{Q} is the set of rational numbers, \mathbb{Z} is the set of integer numbers)
(A) I only
(B) I and II only
(C) III only
(D) I and III only
(E) None of them
15. (Exam II Prob 41) In the finite field, \mathbf{Z}_{17}, the multiplicative inverse of 10 is
(A) 13
(B) 12
(C) 11
(D) 9
(E) 7
16. (Week 5 Prob 9) Suppose that a group has an element of order 7 but no element which is its own inverse (other than the identity). Which of the following is a possible order for this group?
(A) 27
(B) 28
(C) 35
(D) 37
(E) 42

Answer: CEED BCAB EBAE CABC

[^0]: ${ }^{1}$ The problems with "Exam I" - "Exam VI" are taken from the REA book "The Best Test Preparation for the GRE Mathematics Test", 4th edition.
 ${ }^{2}$ The problems with "Chapter *" are taken from "Cracking the GRE Mathematics Test", 4th Edition.

