1. (Exam VI Prob 28)\(^1\) Let the binary operation \(\circ\) be defined on all integers by \(a \circ b = a + b + ab\). Which of the following statements are true?

 I. \(\circ\) is associative.
 II. \(\circ\) is commutative.
 III. For every integer \(a\), there is an integer inverse \(a^{-1}\) such that \(a \circ a^{-1} = 1\).

 (A) I only (B) II only (C) I and II only
 (D) III only (E) none of the above

2. (Chapter 6 Prob 10)\(^2\) If \(S = \{a \in \mathbb{R}^+ : a \neq 1\}\), with the binary operation \(\circ\) defined by the equation \(a \circ b = a^{\log b}\) (where \(\log b = \log_e b\)), then \((S, \circ)\) is a group. What is the inverse of \(a \in S\)?

 (A) \(\frac{1}{e \log a}\) (B) \(\frac{e}{\log a}\) (C) \(e^{-\log a}\)
 (D) \(e^{\log(1/a)}\) (E) \(e^{1/\log a}\)

3. (Exam V Prob 36) Which of the following are groups?

 I. All integers under subtraction
 II. All non-zero real numbers under division
 III. All even integers under addition
 IV. All integers which are multiples of 13 under addition

 (A) I and II only (B) II and III only (C) III only
 (D) IV only (E) III and IV only

4. (Chapter 6 Prob 8) If \(G\) is an Abelian group of order 12, then \(G\) must have a subgroup of all the following orders EXCEPT

 (A) 2 (B) 3 (C) 4
 (D) 6 (E) 12

\(^2\)The problems with “Chapter *” are taken from “Cracking the GRE Mathematics Test”, 4th Edition.
5. (Exam I Prob 5) The number of generators of the cyclic group of order 8 is
 (A) 6 (B) 4 (C) 3
 (D) 2 (E) 1

6. Which one of the following groups is cyclic?
 (A) $\mathbb{Z}_2 \times \mathbb{Z}_4$ (B) $\mathbb{Z}_2 \times \mathbb{Z}_6$ (C) $\mathbb{Z}_3 \times \mathbb{Z}_4$
 (D) $\mathbb{Z}_3 \times \mathbb{Z}_6$ (E) $\mathbb{Z}_4 \times \mathbb{Z}_6$

7. (Exam III Prob 18) Let G be a group, and $a \in G$ is some fixed element. The mapping
 $\phi: G \rightarrow G$ is given by $\phi(g) = a^2 ga^2$ for every element $\phi \in G$. Then ϕ is a homomorphism if
 (A) $a^4 = e$ (B) $a^3 = e$ (C) $ag = ga, \forall g \in G$
 (D) G is abelian (E) G is finite

8. (Exam I Prob 36) Up to isomorphism, how many Abelian groups are there of order 36?
 (A) 1 (B) 4 (C) 9
 (D) 12 (E) 18

9. (Exam VI Prob 24) Let $U = \{0, 1, c\}$ be a ring with three elements (1 is the unity). Which
 statements are true?
 I. $1 + 1 + 1 = 0$
 II. $1 + 1 = c$
 III. $c^2 = 1$
 (A) I only (B) II only (C) I and II only
 (D) II and III only (E) I, II and III

10. (Exam III Prob 6) Find the characteristic of the ring $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.
 (Note: the characteristic of a ring R is the smallest positive number n such that
 $1 + 1 + \ldots + 1 = 0$, where 1 denote the multiplicative identity element of the ring R.)
 (A) 0 (B) 6 (C) 3
 (D) 4 (E) 2
11. (Exam II Prob 62) Let R be a ring, and let $x \neq 0$ be a fixed element in R. Which of the following is a subring of R?

(A) $\{r \in R : xr = 0\}$
(B) $\{r \in R : r^{-1} \text{ exists in } R\}$
(C) $\{x^n : n = 1, 2, 3 \ldots\}$
(D) $\{nx : n \text{ is an integer}\}$
(E) Both (A) and (D)

12. (Exam II Prob 27) Let R be a ring such that $x^2 = x$ for each $x \in R$. Which of the following must be true?

(A) $x = -x$ for all $x \in R$
(B) R is commutative
(C) $xy + yx = 0$, $\forall x, y \in R$

(D) Both (A) and (C)
(E) (A),(B) and (C)

13. (Chapter 6 Prob 14) Let H be the set of all group homomorphisms $\phi : \mathbb{Z}_3 \to \mathbb{Z}_6$. How many functions does H contain?

(A) 1
(B) 2
(C) 3

(D) 4
(E) 6

14. (Chapter 6 Prob 20) Which of the following are subfields of \mathbb{C}?

I. $K_1 = \{a + b\sqrt{2}/3 : a, b \in \mathbb{Q}\}$
II. $K_2 = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } ab < \sqrt{2}\}$
III. $K_3 = \{a + bi : a, b \in \mathbb{Z} \text{ and } i = \sqrt{-1}\}$

(Note: \mathbb{C} is the set of complex numbers, \mathbb{Q} is the set of rational numbers, \mathbb{Z} is the set of integer numbers)

(A) I only
(B) I and II only
(C) III only

(D) I and III only
(E) None of them

15. (Exam II Prob 41) In the finite field, \mathbb{Z}_{17}, the multiplicative inverse of 10 is

(A) 13
(B) 12
(C) 11

(D) 9
(E) 7
16. (Week 5 Prob 9) Suppose that a group has an element of order 7 but no element which is its own inverse (other than the identity). Which of the following is a possible order for this group?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 27</td>
<td>(B) 28</td>
<td>(C) 35</td>
</tr>
<tr>
<td>(D) 37</td>
<td>(E) 42</td>
<td></td>
</tr>
</tbody>
</table>
Answer: CEED BCAB EBAE CABC