GRE Math Subject Prep Course: Abstract Algebra

July 12, 2021

- 1. (Exam VI Prob 28)¹ Let the binary operation \circ be defined on all integers by $a \circ b = a + b + ab$. Which of the following statements are true?
 - I. \circ is associative.
 - II. \circ is commutative.
 - III. For every integer a, there is an integer inverse a^{-1} such that $a \circ a^{-1} = 1$.
 - (A) I only (B) II only (C) I and II only
 - (D) III only (E) none of the above
- 2. (Chapter 6 Prob 10)² If $S = \{a \in \mathbb{R}^+ : a \neq 1\}$, with the binary operation \circ defined by the equation $a \circ b = a^{\log b}$ (where $\log b = \log_e b$), then (S, \circ) is a group. What is the inverse of $a \in S$?
 - (A) $\frac{1}{e \log a}$ (B) $\frac{e}{\log a}$ (C) $e^{-\log a}$ (D) $e^{\log(1/a)}$ (E) $e^{1/\log a}$

3. (Exam V Prob 36) Which of the following are groups?

- I. All integers under subtraction
- II. All non-zero real numbers under division
- III. All even integers under addition
- IV. All integers which are multiples of 13 under addition
- (A) I and II only(B) II and III only(C) III only(D) IV only(E) III and IV only
- 4. (Chapter 6 Prob 8) If G is an Abelian group of order 12, then G must have a subgroup of all the following orders EXCEPT
 - (A) 2 (B) 3 (C) 4
 - (D) 6 (E) 12

¹The problems with "Exam I" – "Exam VI" are taken from the REA book "The Best Test Preparation for the GRE Mathematics Test", 4th edition.

²The problems with "Chapter *" are taken from "Cracking the GRE Mathematics Test", 4th Edition.

5. (Exam I Prob 5) The number of generators of the cyclic group of order 8 is

(A)	6	(B)	4	(C) 3
(D)	2	(E)	1	
6. Which	one of the following grou	ups is	s cyclic?	
(A)	${f Z}_2 imes {f Z}_4$	(B)	$\mathbf{Z}_2 imes \mathbf{Z}_6$	(C) $\mathbf{Z}_3 \times \mathbf{Z}_4$
(D)	${f Z}_3 imes {f Z}_6$	(E)	${f Z}_4 imes {f Z}_6$	
				the fixed element. The mapping Then ϕ is a homomorphism if
(A)	$a^4 = e$	(B)	$a^3 = e$	(C) $ag = ga, \forall g \in G$
(D)	G is abelian	(E)	G is finite	
8. (Exam	I Prob 36) Up to isome	orphi	sm, how many Abelian gr	roups are there of order 36?
(A)	1	(B)	4	(C) 9
(D)	12	(E)	18	
	n VI Prob 24) Let $U = -$ nents are true?	$\{0, 1,$	c } be a ring with three e	lements (1 is the unity). Which
	+1+1=0 +1=c			

III. $c^2 = 1$								
(A) I only	(B) II only	(C) I and II only						
(D) II and III only	(E) I, II and III							

10. (Exam III Prob 6) Find the characteristic of the ring $\mathbb{Z}_2 \oplus \mathbb{Z}_3$. (Note: the *characteristic* of a ring R is the smallest positive number n such that $\underbrace{1+1+\ldots+1}_{n \text{ times}} = 0$, where 1 denote the multiplicative identity element of the ring R.) (A) 0 (B) 6 (C) 3 (D) 4 (E) 2

- 11. (Exam II Prob 62) Let R be a ring, and let $x \neq 0$ be a fixed element in R. Which of the following is a subring of R?
 - (A) $\{r \in R : xr = 0\}$
 - (B) $\{r \in R : r^{-1} \text{ exists in } R\}$
 - (C) $\{x^n : n = 1, 2, 3...\}$
 - (D) $\{nx: n \text{ is an integer}\}$
 - (E) Both (A) and (D)
- 12. (Exam II Prob 27) Let R be a ring such that $x^2 = x$ for each $x \in R$. Which of the following must be true?
 - (A) x = -x for all $x \in R$ (B) R is commutative (C) $xy + yx = 0, \forall x, y \in R$
 - (D) Both (A) and (C) (E) (A),(B) and (C)
- 13. (Chapter 6 Prob 14) Let *H* be the set of all group homomorphisms $\phi : \mathbb{Z}_3 \to \mathbb{Z}_6$. How many functions does *H* contain?

(A) 1	(B) 2	(C) 3
(D) 4	(E) 6	

- 14. (Chapter 6 Prob 20) Which of the following are subfields of \mathbb{C} ?
 - I. $K_1 = \{a + b\sqrt{2/3} : a, b \in \mathbb{Q}\}$ II. $K_2 = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } ab < \sqrt{2}\}$ III. $K_3 = \{a + bi : a, b \in \mathbb{Z} \text{ and } i = \sqrt{-1}\}$

(Note: \mathbb{C} is the set of complex numbers, \mathbb{Q} is the set of rational numbers, \mathbb{Z} is the set of integer numbers)

- (A) I only (B) I and II only (C) III only
- (D) I and III only (E) None of them

15. (Exam II Prob 41) In the finite field, \mathbf{Z}_{17} , the multiplicative inverse of 10 is

- (A) 13 (B) 12 (C) 11
- (D) 9 (E) 7

16. (Week 5 Prob 9) Suppose that a group has an element of order 7 but no element which is its own inverse (other than the identity). Which of the following is a possible order for this group?

(\mathbf{A})) 27	(B)	28	(C)	35
----------------	------	-----	----	-----	----

(D) 37 (E) 42

Answer: CEED BCAB EBAE CABC