GRE Math Subject Prep Course: Calculus I

June 7, 2021

1. (Chapter 2 Prob 28)¹ Integrate
$$\int \frac{x^2}{\sqrt{1-x^2}} dx$$
.

(A)
$$\frac{1}{2}(\arcsin x - \sqrt{1 - x^2})$$

(A)
$$\frac{1}{2}(\arcsin x - \sqrt{1 - x^2})$$
 (B) $\frac{1}{2}(\arcsin x + x\sqrt{1 - x^2})$ (C) $\frac{1}{2}(x\arcsin x - \sqrt{1 - x^2})$ (D) $\frac{1}{2}(\arcsin x - x\sqrt{1 - x^2})$ (E) $\frac{1}{2}(x\arcsin x + \sqrt{1 - x^2})$

(C)
$$\frac{1}{2}(x \arcsin x - \sqrt{1-x^2})$$

(D)
$$\frac{1}{2}(\arcsin x - x\sqrt{1-x^2})$$

(E)
$$\frac{1}{2}(x \arcsin x + \sqrt{1 - x^2})$$

2. (Exam III Prob 13)² The value of
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx$$
 is

(B)
$$\frac{\pi}{2}$$

(D)
$$\frac{\pi}{4}$$

(E)
$$\pi$$

3. (Chapter 2 Prob 34) The region bounded by the graphs of
$$y = x^2$$
 and $y = 6 - |x|$ is revolved around the y-axis. What is the volume of the generated solid?

(A)
$$\frac{32}{3}\pi$$

(D) $\frac{20}{3}\pi$

(B)
$$9\pi$$

(C)
$$8\pi$$

(D)
$$\frac{20}{3}$$

(E)
$$\frac{16}{3}\pi$$

4. (Exam V Prob 50) Suppose
$$\int_0^\infty f(x)dx$$
 exists. Which statements are FALSE?

$$I. \lim_{x \to \infty} f(x) = 0$$

II.
$$\int_0^\infty |f(x)| dx$$
 exists

III.
$$\int_0^\infty [f(x)]^2 dx$$
 exists

(D)
$$\,$$
 II and $\,$ III only

¹The problems with "Chapter *" are taken from "Cracking the GRE Mathematics Test", 4th Edition.

²The problems with "Exam I" - "Exam VI" are taken from the REA book "The Best Test Preparation for the GRE Mathematics Test", 4th edition.

5. (Week 1 Prob 17)³ For continuous functions $f, g : \mathbb{R} \to (0, \infty)$, define the relation \sim by $f \sim g$ if and only if

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=1.$$

Suppose that $f \sim g$. Which of these does NOT necessarily follow:

- (A) $f^2 \sim g^2$
- (B) $\sqrt{f} \sim \sqrt{g}$
- (C) $e^f \sim e^g$

- (D) $f + g \sim 2g$
- (E) $g \sim f$
- 6. (Week 1 Prob 20) Compute the derivative $\frac{d}{dx} \int_0^{x^2} e^{-t^2} dt$
 - (A) e^{-x^4}

(B) $2e^{-x^4}$

(C) xe^{-x^4}

- (D) $2xe^{-x^4}$
- (E) e^{-x^2}
- 7. (Week 1 Prob 22) Calculate $\lim_{n\to\infty} \sum_{k=n+1}^{2n} \frac{1}{k}$.
 - (A) e^2

(B) 0

 $(C) \sin 2$

(D) ln 2

- $(E) \cos 2$
- 8. (Week 2 Prob 1) What is the length of the curve $(x(t), y(t)) = (\cos(t), \sin(t))$ for $0 \le t \le \pi$?
 - (A) 1

(B) 2

(C) π

(D) 2π

- (E) π^2
- 9. (Week 2 Prob 3) For $n \in \mathbb{N}$, evaluate $\int_0^\infty x^n e^{-x} dx$
 - (A) ln(n)

(B) e^{n-1}

(C) e^n

- (D) (n-1)!
- (E) n!
- 10. (Week 2 Prob 5) Compute $\int \frac{x+2}{x^3 x^2 + 2x 2}$.
 - (A) ln(x-1)
- (B) $\ln(x^2+2)$
- (C) $\ln(x-1) \ln(x^2+2)$

- (D) $\ln(x-1) 2\ln(x^2+2)$ (E) $\ln(x-1) \frac{1}{2}\ln(x^2+2)$

³The problems with "Week *" are taken from the GRE preparation course taught by Christian Parkinson.

- 11. (Week 2 Prob 8) Compute $\int_0^{\pi/2} \frac{dx}{1 + \tan(x)^{2021}}$.
 - (A) 2021

- (B) $\tan(2021)$
- (C) 2021π

(D) 4π

- (E) $\frac{\pi}{4}$
- 12. (Week 2 Prob 10) Let $f(x) = \frac{1}{x}$, for $x \in [1, \infty)$. Find the area and volume of the shape which results from rotating the graph of f about the x axis
 - (A) $A = \infty, V = \pi$
- (B) $A = \pi, V = \infty$
- (C) $A = \pi, V = \pi$

- (D) $A = \infty, V = \infty$
- (E) $A = \pi, V = 4\pi$

Answer: DDAE CDDC EEEA