GRE Math Subject Prep Course: Calculus I

June 9, 2021

1. (Exam II Prob 1)	Find the sum of the series	$\sum_{n=1}^{\infty}$	
---------------------	----------------------------	-----------------------	--

(A) 1/12

(B) 1/9

(C) 1/6

(D) 4/3

(E) 1/3

2. (Exam I Prob 7) Assuming convergence, find $x = \sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}}$

- (A) $\frac{1}{2}(\sqrt{5}+1)$ (B) $\frac{1}{2}(\sqrt{13}-1)$ (C) $\frac{1}{2}(\sqrt{5}-1)$ (D) $\frac{1}{2}(\sqrt{13}+1)$ (E) $\frac{1}{2}(\sqrt{13}-\sqrt{5})$

3. (Exam I Prob 66) Given that $\sum_{n=1}^{\infty} a_n$ converges to L, which conclusion is valid for $\sum_{n=1}^{\infty} a_n^2$?

- (A) It may diverge
- (B) It converges absolutely
- (C) It converges to M < L
- (D) It converges to M > L
- (E) It converges to L^2

4. (Chapter 2 Prob 46) The smallest positive integer x for which the power series $\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!} x^n$ does not converge is

(A) 4

(B) 6

(C) 7

(D) 8

(E) 9

5. (Week 2 Prob 11) Evaluate $\lim_{n\to\infty} (3^n + 5^n)^{\frac{1}{n}}$.

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

- 6. (Week 2 Prob 13) Decide whether the following series converge or diverge:
 - $I. \sum_{n=2}^{\infty} \frac{1}{\ln(n!)}$
 - II. $\sum_{n=3}^{\infty} \frac{1}{\ln(n)^{\ln(n)}}$
 - (A) I and II both converge
- (B) I converges and II diverges
- (C) I diverges and II converges
- (D) I and II both diverge
- 7. (Week 2 Prob 14) Decide whether the following series converge or diverge:
 - $I. \sum_{n=1}^{\infty} \frac{n!}{2^{n^2}}$
 - II. $\sum_{n=1}^{\infty} \frac{n^{\sqrt{n}}}{2^n}$
 - (A) I and II both converge
- (B) I converges and II diverges
- (C) I diverges and II converges
- (D) I and II both diverge
- 8. (Week 2 Prob 15) Fix an integer m > 0. Evaluate the infinite sum

$$\sum_{n=1}^{\infty} \frac{m}{n(n+m)}.$$

- (B) $\sum_{k=1}^{m} k^2$ (E) $\sum_{k=1}^{n} k$
- (C) $\sum_{k=1}^{m} \frac{1}{k}$

- (A) $\sum_{k=1}^{m} k$ (D) $\sum_{k=1}^{m} \frac{1}{k^2}$

Answer: BDAC ECAC