GRE Math Subject Prep Course: Calculus III

June 21, 2021

1. (Exam III Prob 47) Find the Jacobian of the transformation from the $x y$-plane to the $u v$-plane defined by

$$
\left\{\begin{array}{l}
u=x e^{x y} \\
v=y e^{x y}
\end{array}\right.
$$

(A) $2 x y e^{x y}$
(B) $\left(1-x^{2} y^{2}\right) e^{2 x y}$
(C) $2 e^{2 x y}$
(D) $(2 x y+1) e^{2 x y}$
(E) 0
2. (Exam II Prob 14) Let $f(x, y)=x^{3}-a x y+y^{2}-x$. Find the greatest lower bound for a so that $f(x, y)$ has a relative minimum point.
(A) 0
(B) $\sqrt{48}$
(C) 12
(D) 6
(E) Does not exist
3. (Chapter 3 Prob 27) Find $\iint_{R} z d x d y$, where $z=8 x y$, and R is the region in the first quadrant of \mathbb{R}^{2} bounded by the two axes and the unit circle.
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4
(E) 8
4. (Exam V Prob 17) The length of the curve $x(t)=e^{t} \cos t, y(t)=-e^{t} \sin t$ for $0 \leq t \leq 1$ is
(A) $2(e-1)$
(B) $\sqrt{2}(e-1)$
(C) e
(D) $2 e$
(E) $\sqrt{2}$
5. (Chapter 3 Prob 25) If $\mathbf{F}=(2 y-2 x) \hat{\mathbf{i}}+\left(x^{2}+y\right) \hat{\mathbf{j}}$, find the value of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the portion of the parabola $y=x^{2}$, directed from $(-1,1)$ to the origin.
(A) -1
(B) 0
(C) 1
(D) 2
(E) 3
6. (Chapter 3 Prob 26) Let C be the portion of the astroid $x^{2 / 3}+y^{2 / 3}=1$ from $(1,0)$ to $(0,1)$, which can be parameterized by the equations

$$
x=\cos ^{3} t, y=\cos ^{3} t
$$

as t increases from 0 to $\frac{\pi}{2}$. Evaluate the integral:

$$
\int_{C}(y \cos x y-1) d x+(1+x \cos x y) d y
$$

(A) -2
(B) -1
(C) 1
(D) $\frac{1}{2} \pi-1$
(E) 2
7. (Week 3 Prob 16) Find all functions $f(x, y)$ satisfying $\frac{\partial f}{\partial x}(x, y)=2 x+y, \frac{\partial f}{\partial y}(x, y)=x+2 y$.
(A) $x^{2}+x y+y^{2}+C$
(B) $x^{2}+2 x y+y^{2}+C$
(C) $2 x y+y^{2}+C$
(D) $x^{3}+x y+y+C$
(E) $x^{3}+y^{3}+C$
8. (Week 3 Prob 17) Find the point on the plane $2 x+y+3 z=3$ which is closest to the origin.
(A) $\left(\frac{3}{14}, \frac{3}{14}, \frac{9}{14}\right)$
(B) $\left(\frac{3}{7}, \frac{3}{14}, \frac{9}{14}\right)$
(C) $(0,0,0)$
(D) $\left(\frac{3}{7}, \frac{3}{7}, \frac{9}{14}\right)$
(E) $(1,1,1)$
9. (Week 3 Prob 19) Set up an integral which represents the volume of the solid bounded above by the graph of $z=6-x^{2}-2 y^{2}$ and below by the graph of $z=-2+x^{2}+2 y^{2}$.
(A) $\int_{0}^{1} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(6-x^{2}-2 y^{2}\right) d x d y$
(B) $\int_{0}^{\sqrt{2}} \int_{-\sqrt{(4-x)^{2} / 2}}^{\sqrt{(4-x)^{2} / 2}}\left(-2+x^{2}+2 y^{2}\right) d x d y$
(C) $\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(8-2 x^{2}-4 y^{2}\right) d x d y$
(D) $\int_{0}^{\sqrt{2}} \int_{-\sqrt{(4-x)^{2} / 2}}^{\sqrt{(4-x)^{2} / 2}}\left(8-2 x^{2}-4 y^{2}\right) d x d y$
(E) $\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(6-x^{2}-2 y^{2}\right) d x d y$
10. (Week 3 Prob 20) Minimize the function $f(x, y, z)=x+4 z$ on the curve $x^{2}+y^{2}+z^{2}$.
(A) $-\sqrt{\frac{1}{17}}$
(B) $-17 \sqrt{\frac{1}{17}}$
(C) $-\sqrt{\frac{2}{17}}$
(D) $-17 \sqrt{\frac{2}{17}}$
(E) $-17 \sqrt{\frac{3}{17}}$

Answer: DEBBC EABCD

