1. (Exam III Prob 47) Find the Jacobian of the transformation from the xy-plane to the uv-plane defined by

$$\begin{cases} u = xe^{xy} \\ v = ye^{xy} \end{cases}$$

(A) $2xve^{xy}$
(B) $(1 - x^2 y^2)e^{2xy}$
(C) $2e^{2xy}$
(D) $(2xy + 1)e^{2xy}$
(E) 0

2. (Exam II Prob 14) Let $f(x, y) = x^3 - axy + y^2 - x$. Find the greatest lower bound for a so that $f(x, y)$ has a relative minimum point.

(A) 0
(B) $\sqrt{48}$
(C) 12
(D) 6
(E) Does not exist

3. (Chapter 3 Prob 27) Find $\iiint_R z \, dxdy$, where $z = 8xy$, and R is the region in the first quadrant of \mathbb{R}^2 bounded by the two axes and the unit circle.

(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4
(E) 8

4. (Exam V Prob 17) The length of the curve $x(t) = e^t \cos t, y(t) = -e^t \sin t$ for $0 \leq t \leq 1$ is

(A) $2(e - 1)$
(B) $\sqrt{2}(e - 1)$
(C) e
(D) $2e$
(E) $\sqrt{2}$

5. (Chapter 3 Prob 25) If $F = (2y - 2x) \hat{i} + (x^2 + y) \hat{j}$, find the value of $\int_C F \cdot dr$, where C is the portion of the parabola $y = x^2$, directed from $(-1,1)$ to the origin.

(A) -1
(B) 0
(C) 1
(D) 2
(E) 3
6. (Chapter 3 Prob 26) Let \(C \) be the portion of the astroid \(x^{2/3} + y^{2/3} = 1 \) from \((1,0)\) to \((0,1)\), which can be parameterized by the equations

\[x = \cos^3 t, y = \cos^3 t \]

as \(t \) increases from 0 to \(\frac{\pi}{2} \). Evaluate the integral:

\[\int_C \left(y \cos xy - 1 \right) dx + \left(1 + x \cos xy \right) dy \]

(A) \(-2\) (B) \(-1\) (C) 1 (D) \(\frac{1}{2} \pi - 1\) (E) 2

7. (Week 3 Prob 16) Find all functions \(f(x, y) \) satisfying \(\frac{\partial f}{\partial x}(x, y) = 2x + y, \frac{\partial f}{\partial y}(x, y) = x + 2y \).

(A) \(x^2 + xy + y^2 + C \) (B) \(x^2 + 2xy + y^2 + C \) (C) \(2xy + y^2 + C \)

(D) \(x^3 + xy + y + C \) (E) \(x^3 + y^3 + C \)

8. (Week 3 Prob 17) Find the point on the plane \(2x + y + 3z = 3 \) which is closest to the origin.

(A) \(\left(\frac{3}{14}, \frac{3}{14}, \frac{9}{14} \right) \) (B) \(\left(\frac{3}{7}, \frac{3}{14}, \frac{9}{14} \right) \) (C) \((0,0,0)\)

(D) \(\left(\frac{3}{7}, \frac{3}{7}, \frac{9}{14} \right) \) (E) \((1,1,1)\)

9. (Week 3 Prob 19) Set up an integral which represents the volume of the solid bounded above by the graph of \(z = 6 - x^2 - 2y^2 \) and below by the graph of \(z = -2 + x^2 + 2y^2 \).

(A) \(\int_0^1 \int_{\sqrt{\frac{(4-x^2)/2}}^2}^{\frac{(4-x^2)/2}} (6 - x^2 - 2y^2) dx \ dy \)

(B) \(\int_0^{\sqrt{2}} \int_{\sqrt{\frac{(4-x^2)/2}}^2}^{\frac{(4-x^2)/2}} (-2 + x^2 + 2y^2) dx \ dy \)

(C) \(\int_{-\sqrt{2}}^{\sqrt{2}} \int_{\sqrt{\frac{(4-x^2)/2}}^2}^{\frac{(4-x^2)/2}} (8 - 2x^2 - 4y^2) dx \ dy \)

(D) \(\int_0^{\sqrt{2}} \int_{\sqrt{\frac{(4-x^2)/2}}^2}^{\frac{(4-x^2)/2}} (8 - 2x^2 - 4y^2) dx \ dy \)

(E) \(\int_{-\sqrt{2}}^{\sqrt{2}} \int_{\sqrt{\frac{(4-x^2)/2}}^2}^{\frac{(4-x^2)/2}} (6 - x^2 - 2y^2) dx \ dy \)
10. (Week 3 Prob 20) Minimize the function \(f(x, y, z) = x + 4z \) on the curve \(x^2 + y^2 + z^2 \).

\[
\begin{align*}
(A) & \quad -\sqrt{\frac{1}{17}} \\
(B) & \quad -17\sqrt{\frac{1}{17}} \\
(C) & \quad -\sqrt{\frac{2}{17}} \\
(D) & \quad -17\sqrt{\frac{2}{17}} \\
(E) & \quad -17\sqrt{\frac{3}{17}}
\end{align*}
\]
Answer: DEBBC EABCD