GRE Math Subject Prep Course: Calculus III

June 21, 2021

1. (Exam III Prob 47) Find the Jacobian of the transformation from the xy-plane to the uv-plane defined by

$$\begin{cases} u = xe^{xy} \\ v = ye^{xy} \end{cases}$$

(A) $2xye^{xy}$

(B) $(1 - x^2y^2)e^{2xy}$

(C) $2e^{2xy}$

(D) $(2xy+1)e^{2xy}$

(E) 0

2. (Exam II Prob 14) Let $f(x,y) = x^3 - axy + y^2 - x$. Find the greatest lower bound for a so that f(x,y) has a relative minimum point.

(A) 0

(B) $\sqrt{48}$

(C) 12

(D) 6

(E) Does not exist

3. (Chapter 3 Prob 27) Find $\iint_R z dx dy$, where z = 8xy, and R is the region in the first quadrant of \mathbb{R}^2 bounded by the two axes and the unit circle.

 $(A) \quad \frac{1}{2}$

(B) 1

(C) 2

(D) 4

(E) 8

4. (Exam V Prob 17) The length of the curve $x(t) = e^t \cos t$, $y(t) = -e^t \sin t$ for $0 \le t \le 1$ is

(A) 2(e-1)

(B) $\sqrt{2}(e-1)$

(C) e

(D) 2e

(E) $\sqrt{2}$

5. (Chapter 3 Prob 25) If $\mathbf{F} = (2y - 2x) \hat{\mathbf{i}} + (x^2 + y) \hat{\mathbf{j}}$, find the value of $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the portion of the parabola $y = x^2$, directed from (-1,1) to the origin.

(A) -1

(B) 0

(C) 1

(D) 2

(E) 3

6. (Chapter 3 Prob 26) Let C be the portion of the astroid $x^{2/3} + y^{2/3} = 1$ from (1,0) to (0,1), which can be parameterized by the equations

$$x = \cos^3 t, y = \cos^3 t$$

as t increases from 0 to $\frac{\pi}{2}$. Evaluate the integral:

 $\int_{C} (y\cos xy - 1)dx + (1 + x\cos xy)dy$

(A) -2

(B) -1

(C) 1

- (D) $\frac{1}{2}\pi 1$
- (E) 2
- 7. (Week 3 Prob 16) Find all functions f(x,y) satisfying $\frac{\partial f}{\partial x}(x,y) = 2x + y$, $\frac{\partial f}{\partial y}(x,y) = x + 2y$.
 - (A) $x^2 + xy + y^2 + C$
- (B) $x^2 + 2xy + y^2 + C$ (C) $2xy + y^2 + C$

- (D) $x^3 + xy + y + C$
- (E) $x^3 + y^3 + C$
- 8. (Week 3 Prob 17) Find the point on the plane 2x + y + 3z = 3 which is closest to the origin.
 - (A) $(\frac{3}{14}, \frac{3}{14}, \frac{9}{14})$
- (B) $(\frac{3}{7}, \frac{3}{14}, \frac{9}{14})$
- (C) (0,0,0)

- (D) $(\frac{3}{7}, \frac{3}{7}, \frac{9}{14})$
- (E) (1,1,1)
- 9. (Week 3 Prob 19) Set up an integral which represents the volume of the solid bounded above by the graph of $z = 6 - x^2 - 2y^2$ and below by the graph of $z = -2 + x^2 + 2y^2$.

(A)
$$\int_0^1 \int_{-\sqrt{(4-x^2)/2}}^{\sqrt{(4-x^2)/2}} (6-x^2-2y^2) dx \, dy$$

(B)
$$\int_0^{\sqrt{2}} \int_{-\sqrt{(4-x)^2/2}}^{\sqrt{(4-x)^2/2}} (-2+x^2+2y^2) dx \, dy$$

(C)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{(4-x^2)/2}}^{\sqrt{(4-x^2)/2}} (8 - 2x^2 - 4y^2) dx dy$$

(D)
$$\int_0^{\sqrt{2}} \int_{-\sqrt{(4-x)^2/2}}^{\sqrt{(4-x)^2/2}} (8 - 2x^2 - 4y^2) dx \, dy$$

(E)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{(4-x^2)/2}}^{\sqrt{(4-x^2)/2}} (6-x^2-2y^2) dx dy$$

- 10. (Week 3 Prob 20) Minimize the function f(x, y, z) = x + 4z on the curve $x^2 + y^2 + z^2$.
 - $(A) -\sqrt{\frac{1}{17}}$
- (B) $-17\sqrt{\frac{1}{17}}$
- (C) $-\sqrt{\frac{2}{17}}$

- (D) $-17\sqrt{\frac{2}{17}}$
- (E) $-17\sqrt{\frac{3}{17}}$

Answer: DEBBC EABCD