# GRE Math Subject Prep Course: Complex Analysis 

July 19, 2021

1. (Chapter 7 Prob 30$)^{1}$ What is the polar form of a complex number equal to $(i-\sqrt{3})^{6}$ ?
(A) $-2^{6}$
(B) $2^{6}(-1+i)$
(C) $2^{6}(1-i)$
(D) $2^{6}\left(\frac{1}{2}-\sqrt{\frac{3}{2}} i\right)$
(E) $2^{6}$
2. (Exam I Prob 17$)^{2}$ The sum of the 9 th roots of unity is
(A) 0
(B) 1
(C) 9
(D) 10
(E) $1+i$
3. (Chapter 7 Prob 20) What is $\log \left(-e^{3}\right)$ ?
(A) -3
(B) 3
(C) $3+\pi i$
(D) $3-\pi i$
(E) $3+2 \pi i$
4. (Exam I Prob 16) The fixed point(s) of a Mobius transformation $w(z)=\frac{z-2}{z-1}$ is (are)
(A) $1+\sqrt{3}$
(B) $1 \pm 2 i$
(C) $2 i$
(D) $1 \pm i$
(E) $-1 \pm \sqrt{2} i$
5. (Chapter 7 Prob 25) In the complex plane, the set of all points that satisfy the equation $(\bar{z})^{2}=z^{2}$ is
(A) a circle
(B) a point
(C) a ray
(D) a line
(E) two lines

[^0]6. (Chapter 7 Prob 24) What are the complex roots of the equation $e^{2 z}=i$ ?
(A) $\frac{i}{2}\left(-\frac{\pi}{2}+2 n \pi\right)$
(B) $2 i\left(-\frac{\pi}{2}+n \pi\right)$
(C) $\frac{i}{2}\left(\frac{\pi}{2}+n \pi\right)$
(D) $2 i\left(\frac{\pi}{2}+2 n \pi\right)$
(E) $\frac{i}{2}\left(\frac{\pi}{2}+2 n \pi\right)$
7. (Exam V Prob 56) Which of the following functions are analytic?
I. $\bar{z}$
II. $\bar{z} \sin z$
III. $z+\sin z$
IV. $z+\bar{z}$
V. $z e^{z}$
(A) I only
(B) I and II only
(C) III and V only
(D) IV only
(E) None of the above
8. (Exam VI Prob 7) Suppose $u(x, y)$ is harmonic in a domain $D$, and $v(x, y)$ is the harmonic conjugate of $u$. Let $f(z)=u(x, y)+i v(x, y)$. Which of the following statements are true?
I. $g(z)=v-i u$ is analytic in $D$.
II. $f^{\prime}(z)=u_{x}+i v_{y}$.
III. $v(x, y)+x+y$ satisfies Laplace's equation in $D$.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
9. (Exam VI Prob 51) Suppose $f(z)$ is a nonconstant entire function. Which of the following is always true?
(A) $\lim _{z \rightarrow \infty} f(z)=0$
(B) $\lim _{z \rightarrow 0} f(z)=0$
(C) $f^{\prime}(z)$ may not be entire.
(D) $\oint f(z) d z=2 \pi i$ for every simple, closed curve in the complex plane.
(E) None of the above
10. (Chapter 7 Prob 48) Let $f(z)$ be a complex analytic function such that $f(z)=(5 x-3 y)+$ $i v(x, y)$, where $v(x, y)$ is a real-valued function and $x, y \in \mathbb{R}$. If $v(4,1)=7$, what is $v(3,2)$ ?
(A) -10
(B) -9
(C) 1
(D) 9
(E) 14
11. (Chapter 7 Prob 26) Which of the following is a harmonic conjugate $u(x, y)$ of the harmonic function $v=x-3 x^{2 y}+y^{3}$ ?
(A) $x^{3}-3 x y^{2}+y$
(B) $-x^{3}+3 x y^{2}-y$
(C) $-y^{3}+3 x^{2 y}-x$
(D) $y^{3}-3 x^{2 y}+x$
(E) $-x^{3}+3 x y^{2}$
12. (Exam V Prob 45) Let $C$ be the circle $|z|=3$, described in a counterclockwise orientation, and write
$$
g(w)=\oint_{C} \frac{2 z^{2}-2-z}{z-w} d z
$$

Then $g(2)$ is given by
(A) 1
(B) $2 \pi i$
(C) 0
(D) $4 \pi i$
(E) $8 \pi i$
13. (Practice Book Prob 53$)^{3}$ In the complex plane, let $C$ be the circle $|z|=2$ with positive (counterclockwise) orientation. Then

$$
\int_{C} \frac{d z}{(z-1)(z+3)^{2}}=
$$

(A) 0
(B) $2 \pi i$
(C) $\frac{\pi i}{2}$
(D) $\frac{\pi i}{8}$
(E) $\frac{\pi i}{16}$
14. (Exam VI Prob 12) Determine the Laurent series for $f(z)=\frac{1}{z-2}$ which converges in the annulus $1 \leq|z-3|<\infty$.
(A) $\sum_{n=0}^{\infty}(z-3)^{n}$
(B) $\sum_{n=0}^{\infty}(z-3)^{-n}$
(C) $\sum_{n=0}^{\infty}(-1)^{n}(z-3)^{-n-1}$
(D) $\sum_{n=0}^{\infty}(-1)^{n}(z-3)^{-n}$
(E) $\sum_{n=1}^{\infty}(-1)^{n}(z-3)^{-n}$

[^1]Answer: AACDE ECEE DBEDC


[^0]:    ${ }^{1}$ The problems with "Chapter *" are taken from "Cracking the GRE Mathematics Test", 4th Edition.
    ${ }^{2}$ The problems with "Exam I" - "Exam VI" are taken from the REA book "The Best Test Preparation for the GRE Mathematics Test", 4th edition.

[^1]:    ${ }^{3}$ The problems with "Practice Book" are taken from the mathematics test practice book by ETS, which can be found at http://www.ets.org/Media/Tests/GRE/pdf/Math.pdf

