# GRE Math Subject Prep Course: Linear Algebra 

June 30, 2021

1. (Exam III Prob 3) Which of the following matrices is normal? $(i=\sqrt{-1})$
(A) $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$
(B) $\left(\begin{array}{cc}0 & i \\ -1 & 1\end{array}\right)$
(C) $\left(\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right)$
(D) $\left(\begin{array}{cc}i & 1 \\ -1 & 0\end{array}\right)$
(E) $\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$
2. (Exam III Prob 12) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T(x, y)=\left[\begin{array}{l}
2 x-y \\
x+3 y
\end{array}\right]
$$

Find the adjoint $T^{*}$ of $T$.
(A) $\left[\begin{array}{c}2 x+y \\ -x+3 y\end{array}\right]$
(B) $\left[\begin{array}{l}x+2 y \\ x-3 y\end{array}\right]$
(C) $\left[\begin{array}{l}2 x+y \\ x-3 y\end{array}\right]$
(D) $\left[\begin{array}{c}x / 2-y \\ -x+y / 3\end{array}\right]$
(E) $\left[\begin{array}{l}3 x-y \\ x+2 y\end{array}\right]$
3. (Exam IV Prob 64) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, and let $I$ be an identity matrix. Which matrix polynomial is zero?
(A) $A^{2}-10 A+I$
(B) $A^{2}-10 A$
(C) $A^{2}-5 A-2 I$
(D) $A^{2}+5 A-2 I$
(E) $A^{2}+5 A+2 I$
4. (Exam IV Prob 13) Given that 3 by 3 matrix $A$ has only one eigenvalue, what is the dimension of the corresponding eigenspace?
(A) 1
(B) 2
(C) 3
(D) 1 or 2
(E) 1, 2 or 3
5. (Exam II Prob 32) If $A$ is an $n \times n$ matrix with diagonal entries $a$ and other entries $b$, then one eigenvalue of $A$ is $a-b$. Find another eigenvalue of $A$.
(A) $b-a$
(B) $n b+a-b$
(C) $n b-a+b$
(D) 0
(E) none of these
6. (Exam I Prob 44) Let $M=\left(\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right)$. Then $M^{6}=k M$ for $k=$
(A) $2^{6}$
(B) $2^{8}$
(C) $2^{10}$
(D) $2^{12}$
(E) $2^{14}$
7. (Exam IV Prob 58) If the determinants $|A|=3$ and $|B|=2$, find $\left|2(A B)^{-1}\right|$ for $4 \times 4$ matrices $A$ and $B$.
(A) $1 / 3$
(B) $2 / 3$
(C) $4 / 3$
(D) $8 / 3$
(E) 12
8. (Exam VI Prob 35) Let $A$ and $B$ be $n \times n$ symmetric matrices. Which of the following is necessary and sufficient condition for $A B$ to be symmetric?
(A) $B A$ is skew-symmetric
(B) $A, B$ are nonsingular
(C) $|A B|=|B A|$
(D) $A$ and $B$ commute
(E) $B$ is Hermitian
9. (Practice Prob 31) Of the number 2,3 and 5 , which are eigenvalues of the matrix $\left(\begin{array}{lll}3 & 5 & 3 \\ 1 & 7 & 3 \\ 1 & 2 & 8\end{array}\right)$
(A) NONE
(B) 2 and 3 only
(C) 2 and 5 only
(D) 3 and 5 only
(E) 2,3 and 5
10.

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 2 & 3 & 4 & 5 \\
0 & 0 & 3 & 4 & 5 \\
0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

(Practice Prob 34) Which of the following statements about the real matrix shown above is FALSE?
(A) $A$ is invertible.
(B) If $x \in \mathbb{R}$ and $A x=x$, then $x=0$.
(C) The last row of $A^{2}$ is ( 000025 )
(D) $A$ can be transformed into $5 \times 5$ identity matrix by a sequence of elementary row operations.
(E) $\operatorname{det}(A)=120$
11. (Practice Prob 37) Let $V$ be a finite-dimensional real vector space and let $P$ be a linear transformation of $V$ such that $P^{2}=P$. Which of the following must be true?
I. $P$ is invertible.
II. $P$ is diagonalizable.
III. $P$ is either the identity transformation or the zero transformation.
(A) None
(B) I only
(C) II only
(D) III only
(E) II and III

Answer: DACE BCDD CBC

