GRE Math Subject Prep Course: Linear Algebra

June 30, 2021

1. (Exam III Prob 3) Which of the following matrices is normal? $(i = \sqrt{-1})$

$$\begin{array}{c} (A) \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \\ (D) \begin{pmatrix} i & 1 \\ -1 & 0 \end{pmatrix} \\ (E) \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \\ (E) \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \\ \end{array}$$

2. (Exam III Prob 12) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T(x,y) = \begin{bmatrix} 2x - y \\ x + 3y \end{bmatrix}$$

Find the adjoint T^* of T.

(A)
$$\begin{bmatrix} 2x+y\\ -x+3y \end{bmatrix}$$
 (B) $\begin{bmatrix} x+2y\\ x-3y \end{bmatrix}$ (C) $\begin{bmatrix} 2x+y\\ x-3y \end{bmatrix}$
(D) $\begin{bmatrix} x/2-y\\ -x+y/3 \end{bmatrix}$ (E) $\begin{bmatrix} 3x-y\\ x+2y \end{bmatrix}$

- 3. (Exam IV Prob 64) Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, and let I be an identity matrix. Which matrix polynomial is zero? (A) $A^2 - 10A + I$ (B) $A^2 - 10A$ (C) $A^2 - 5A - 2I$
 - (D) $A^2 + 5A 2I$ (E) $A^2 + 5A + 2I$
- 4. (Exam IV Prob 13) Given that 3 by 3 matrix A has only one eigenvalue, what is the dimension of the corresponding eigenspace?
 - (A) 1 (B) 2 (C) 3
 - (D) 1 or 2 (E) 1, 2 or 3

5. (Exam II Prob 32) If A is an $n \times n$ matrix with diagonal entries a and other entries b, then one eigenvalue of A is a - b. Find another eigenvalue of A.

(A) $b-a$	(B) $nb+a-b$	(C) $nb - a + b$
-----------	--------------	------------------

(D) 0 (E) none of these

6. (Exam I Prob 44) Let $M = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$. Then $M^6 = kM$ for k =(A) 2^6 (B) 2^8 (C) 2^{10} (D) 2^{12} (E) 2^{14}

7. (Exam IV Prob 58) If the determinants |A| = 3 and |B| = 2, find $|2(AB)^{-1}|$ for 4×4 matrices A and B.

(A) $1/3$	(B) $2/3$	(C) $4/3$
(D) 8/3	(E) 12	

8. (Exam VI Prob 35) Let A and B be $n \times n$ symmetric matrices. Which of the following is necessary and sufficient condition for AB to be symmetric?

(A) BA is skew-symmetric (B) A, B are nonsingular (C) |AB| = |BA|

(D) A and B commute (E) B is Hermitian

9. (Practice Prob 31) Of the number 2, 3 and 5, which are eigenvalues of the matrix $\begin{pmatrix} 3 & 5 & 3 \\ 1 & 7 & 3 \\ 1 & 2 & 8 \end{pmatrix}$

(A) NONE	(B) 2 and 3 only	(C) 2 and 5 only
(D) $3 \text{ and } 5 \text{ only}$	(E) $2,3$ and 5	

2

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 3 & 4 & 5 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

(Practice Prob 34) Which of the following statements about the real matrix shown above is FALSE?

- (A) A is invertible.
- (B) If $x \in \mathbb{R}$ and Ax = x, then x = 0.
- (C) The last row of A^2 is (000025)

(D) A can be transformed into 5×5 identity matrix by a sequence of elementary row operations.

- (E) det(A) = 120
- 11. (Practice Prob 37) Let V be a finite-dimensional real vector space and let P be a linear transformation of V such that $P^2 = P$. Which of the following must be true?
 - I. P is invertible.
 - II. P is diagonalizable.
 - III. P is either the identity transformation or the zero transformation.
 - (A) None (B) I only (C) II only
 - (D) III only (E) II and III

Answer: DACE BCDD CBC