GRE Math Subject Prep Course: Topology

July 14, 2021

- 1. (Exam III Prob 27)¹ Let $X = \{a, b, c\}$. Which of the following classes of subsets of X does NOT form a topology on X?
 - (A) $\{X, \emptyset\}$
 - (B) $\{X, \emptyset, \{a\}\}$
 - (C) $\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$
 - (D) $\{X, \emptyset, \{a, b\}, \{a, c\}, \{b, c\}\}$
 - (E) P(X), the power set of X.

2. (Exam II Prob 21) How many topologies are possible on a set of 2 points?

(A) 5	(B) 4	(C) 3
(D) 2	(E) 1	

3. (Exam II Prob 64) Let $S = \{x_1, x_2, \ldots, x_n, \ldots\}$ be a topological space where the open sets are $U_n = \{x_1, \ldots, x_n\}$ for $n = 1, 2, \ldots$ Let $E = \{x_2, x_4, \ldots, x_{2k}\}$. Find the set of cluster points of E.

(A) $S - \{x_1, x_2\}$	(B) $\{x_1\}$	(C) $\{x_2\}$
(D) $E - \{x_2\}$	(E) $S-E$	

4. (Exam III Prob 61) Which of the following is a neighborhood of 0 relative to the usual topology τ for the real numbers?

(A) (0,1) (B) [-1,1] (C) [-1,	(A) (0,1)	(B) $[-1,1]$	(C) $[-1, 0]$
-------------------------------	-----------	--------------	---------------

(D) [0,1] (E) (-1,0)

 $^{^1{\}rm The}$ problems with "Exam I" – "Exam VI" are taken from the REA book "The Best Test Preparation for the GRE Mathematics Test", 4th edition.

- 5. (Chapter 7 Prob 34)² Let (X, T) be a topological space, and let A be the subset $(0, 1) \cup [4, 6)$ in \mathbb{R} . Find the exterior of A.
 - (A) $(-\infty,0) \cup (2,3) \cup (6,\infty)$
 - (B) $[0,1] \cup [4,6]$
 - (C) $(-\infty, 0) \cup (1, 4) \cup (6, \infty)$
 - (D) $(-\infty,0] \cup [1,4) \cup (6,\infty)$
 - (E) $(-\infty, 0) \cup (6, \infty)$
- 6. (Exam IV Prob 32) The set of all points in the plane satisfying $y = x \sin\left(\frac{1}{x}\right)$ together with the origin
 - (A) is compact but not connected
 - (B) is connected but not compact
 - (C) is compact and connected
 - (D) contains an open set
 - (E) does not contain all of its limit points
- 7. (Exam III Prob 65) If τ is the discrete topology on the real numbers \mathbb{R} , find the closure of (a, b).

(A) (a,b)	(B) $(a,b]$	(C) $[a,b)$
(D) $[a,b]$	(E) \mathbb{R}	

- 8. (Exam II Prob 55) Let f be a mapping from a topological space X onto itself. Which of the following is true for continuous f? (Hint: "onto" means f is a surjection.)
 - (A) Every open set in X is the image of an open set in X.
 - (B) $f^{-1}(B)$ is bounded for each bounded set B in X.
 - (C) f is one-to-one.
 - (D) Both (A) and (B)
 - (E) Both (A) and (C)

²The problems with "Chapter *" are taken from "Cracking the GRE Mathematics Test", 4th Edition.

- 9. (Exam VI Prob 60) Which of the following sets in \mathbb{R}^2 are compact?
 - (A) $\{x, y : x \ge 0, y \ge 0\}$
 - (B) $\{x, y: 0 \le x \le 1, 0 \le y \le 1\}$
 - (C) $\{x, y : |x y| \le 2\}$
 - (D) $\{x, y: x^2 + y^2 < 2\} \cap \{x, y: x^2 + y^2 > 1\}$
 - (E) $\{x, y : |x+y| \le 1\}$
- 10. (Practice Book Prob 56)³ For every set S and every metric d on S, which of the following is a metric on S?

(A) $4+d$	(B) $e^d - 1$	(C) $d - d $
(D) d^2	(E) \sqrt{d}	

11. (Exam III Prob 18) Let R[0,1] denote the set of Riemann integrable functions defined on [0,1]. Which of the following is NOT satisfied by the function d defined on R[0,1] by

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx ?$$

- (A) d(f, f) = 0
- (B) $d(f,g) \ge 0$
- (C) d(f,g) > 0 if $f \neq g$
- (D) d(f,g) = d(g,f)
- (E) $d(f,g) \le d(f,h) + d(h,g)$
- 12. (Exam IV Prob 52) Let C_n be a sequence of closed, bounded, nonempty intervals in the real line with the usual topology. The intervals are also nested in the sense that $C_{n+1} \subseteq C_n$.

Which of the following is true of the intersection $S = \bigcap_{k=1}^{\infty} C_k$?

- (A) S may be open or closed.
- (B) S may be empty.

 $^{^{3}}$ The problems with "Practice Book" are taken from the mathematics test practice book by ETS, which can be found at http://www.ets.org/Media/Tests/GRE/pdf/Math.pdf

- (C) S must be nonempty and closed.
- (D) S must contain an interval.
- (E) S must not contain an interval.
- 13. (Week 6 Prob 14) Let τ be the topology on \mathbb{R} generated by sets of the form $\{[a, b) : a, b \in \mathbb{R}, a < b\}$. Which of the following are true in the topological space (\mathbb{R}, τ) ?
 - I. [0,1] is compact.
 - II. [0,1] is Hausdorff.
 - III. [0,1] is connected.

(A) I and II only	(B) II and III only	(C) I only
(D) II only	(E) None of above	

- 14. (Week 6 Prob 15) Let $S \subset [0,1] \times [0,1]$ consist of all points $(x, y) \in [0,1] \times [0,1]$ such that x or y or both is irrational. Which of the following is true (with respect to the standard topology on \mathbb{R}^2)?
 - I. S is open.
 - II. S is closed.
 - III. S is connected.
 - (A) I and II only (B) II and III only (C) I only
 - (D) II only (E) III only

Answer: DBAB CBAA BECC DE