Exotic 4-manifolds with boundary

Hyunki Min with John Etnyre and Anubhav Mukherjee

Joint Mathematics Meeting January 2021

4-manifolds with boundary

• Goal: studying smooth structures on 4-manifolds with boundary.

• Try to figure out which 3-manifolds bound a compact 4-manifold with infinitely many smooth structures.

Strategy

- Find/build a 4-manifold which Y bounds (embeds).
- Modify the 4-manifold keeping the homeomorphism type.
- Use smooth invariants (SW, HF, genus, ...) to distinguish them.

Heegaard Floer invariants

- W is a 4-manifold with $b_2^+ > 1$
- An admissible cut is a separating hypersurface N satisfying

$$b_2^+(W_1), b_2^+(W_2) \ge 1$$

$$F_{W,s}^{mix} := F_{W_2,s|_{W_2}}^+ \circ \tau \circ F_{W_1,s|_{W_1}}^-$$

Heegaard Floer invariants

- X is a 4-manifold with connected boundary
- $b=(b_1,...,b_n)$ is a basis of $H^2(X,\partial X)$
- (Juhasz-Zemke) Ozsvath-Szabo polynomial is defined as

$$\Phi_{X;b} := \sum_{s \in \operatorname{Spin}^{c}(X)} F_{X,s}^{mix}(\theta^{-}) \cdot z_{1}^{\langle i_{*}(s-s_{0}) \cup b_{1}, [X,\partial X] \rangle} \cdots z_{n}^{\langle i_{*}(s-s_{0}) \cup b_{n}, [X,\partial X] \rangle}$$

Heegaard Floer invariants

• $\Phi_{X;b}$ is an invariant of X up to automorphisms of $HF^+(\partial X)$

• If X is a closed 4-manifold, use $X \setminus B^4$

Concordance surgery

• A generalization of Fintushel-Stern knot surgery.

Concordance surgery

• Let X be a 4-manifold containing an embedded torus T with a trivial normal bundle.

• Consider a homology sphere Y and a self concordance $C = (Y \times I, A, K)$. Glue the ends of $(Y \times I, A)$ to obtain $(Y \times S^1, T')$.

Concordance surgery

We obtain

$$X_{\mathcal{C}} := X \setminus N(T) \cup_{\phi} Y \times S^1 \setminus N(T')$$

where $\phi:\partial(X\setminus N_T)\to\partial W_{\mathcal{C}}$ is a diffeomorphism sending ∂D^2

• in N(T) to the Seifert longitude of K.

Graded Lefschetz number

(Juhász-Maregon) For a self-concordance $\mathcal{C}=(Y\times I,A,K)$

$$\widehat{F}_{\mathcal{C},i}:\widehat{HFK}(Y,K,i)\to\widehat{HFK}(Y,K,i)$$

$$Lef_{\mathcal{C}}(z) := \sum_{i \in \mathbb{Z}} (-1)^{i} Tr(\widehat{F}_{\mathcal{C},i}) \cdot z^{i}$$

Concordance surgery formula

• (Juhasz-Zemke) If X is a closed 4-manifold containing a homologically non-trivial torus with trivial normal bundle,

$$\Phi_{X_{\mathcal{C}};b} = \operatorname{Lef}_{\mathcal{C}}(z) \cdot \Phi_{X;b}$$

• (Etnyre-M-Mukherjee) If X is a 4-manifold with boundary

$$\Phi_{X_{\mathcal{C}};b} = \operatorname{Lef}_{\mathcal{C}}(z) \cdot \Phi_{X;b}$$

• If $\operatorname{Lef}_{\mathcal{C}}(z)$ and $\operatorname{Lef}_{\mathcal{C}'}(z)$ are different and $\Phi_{X;b} \neq 0$, then $X_{\mathcal{C}}$ is not diffeomorphic to $X_{\mathcal{C}'}$

Main Theorem

A closed oriented 3-manifold Y admits infinitely many simply-connected exotic fillings if

- 1) Y admits a contact structure with non-vanishing contact invariant in $HF^+(Y)$, or
- 2) Y is a rational homology 3-sphere embedding into a closed definite 4-manifold as a separating hypersurface.

Proof of (2)

• Suppose Y embeds into a closed negative definite 4-manifold W.

• For any Spin^c structure on W, the map

$$F_{W,s}^+: HF^+(S^3,t) \to HF^+(S^3,t)$$

is surjective.

Proof of (2)

• Cut W along Y into $W_1 \cup W_2$. Then the map

$$F_{W_1,s|_{W_1}}^+: HF^+(S^3,t) \to HF^+(Y,s|_Y)$$

satisfies

$$F_{W_1,s|_{W_1}}^+(\theta^+) \neq 0$$
 W_1 W_2

Proof of (2)

• Consider a 4-manifold $X=K3\#W_1$

• Since $F_{K3,s}^{mix}(\theta^-)=\theta^+$, we have

$$F_{K3\#W_1}^{mix}(\theta^-) \neq 0$$

• Now apply the surgery formula on the torus in K3 surface.

Questions

• Given a 3-manifold Y and an element $\eta \in HF^+(Y)$, is there a 4-manifold X such that $F_{X,S}^{mix}(\theta^-) = \eta$?

• Given a 3-manifold Y, is there any 4-manifold X such that $F_{X,S}^{mix}(\theta^-) \neq 0$?

Thank you!