Contact structures on hyperbolic 3-manifolds

Hyunki Min

Georgia Tech

Joint work with James Conway

Contact structures

A contact structure on a 3-manifold M is a plane field $\xi = \ker \alpha$ where $\alpha \in \Omega^1(M)$, $\alpha \wedge d\alpha > 0$.

Tight & overtwisted contact structures

- An overtwisted disk is an embedded disk tangent to the contact planes along the boundary.
- A contact structure is called overtwisted if it contains an overtwisted disk.
- A contact structure is called tight if it does not contain an overtwisted disk.

Theorem (Eliashberg 1989)

There is a one to one correspondence between overtwisted contact structures (up to isotopy) and plane fields (up to homotopy).

Tight contact structures

Goal

Classify tight contact structures up to isotopy.

Prime manifolds

► Seifert fibration: Many results

► Toroidal: Many results

Hyperbolic: No result

Hyperbolic manifolds

Why is it hard?

- ▶ Need a 'good' decomposition.
- Analyze contact structures in each piece.
- Most decompositions for hyperbolic manifolds are not simple enough.

Figure-8 knot

- Surgeries on the figure-8 knot yield hyperbolic manifolds.
- ▶ $S_r^3(K) \setminus N(K^*)$ is a punctured torus bundle over S^1 with a pseudo-Anosov monodromy.

Results I

Theorem (M - Conway 2018)

There are exactly two Stein fillable and universally tight contact structures on $S^3_{1/n}(K)$ for n < -1.

Results II

Theorem (M – Conway 2018)

Let r be a rational number. Then $S_r(K)$ supports

$$\left\{ \begin{array}{ll} 2\Phi(r), & r\in [1,4)\cup [5,\infty) \\ \Phi(r)+\Psi(r), & r\in (-\infty,-4)\cup [-3,0) \end{array} \right.$$

tight contact structures, where

$$-\frac{1}{r} = [r_0, \dots, r_n] = r_0 - \frac{1}{r_1 - \frac{1}{\cdots - \frac{1}{r_n}}},$$

$$\Phi(r) = |r_0(r_1 + 1) \cdots (r_n + 1)|.$$

$$\Psi(r) = \begin{cases} 0, & r \ge -3\\ \Phi(-\frac{1}{r+3}), & r < -3. \end{cases}$$

Thank you!