Cabling Legendrian knots

Hyunki Min with Apratim Chakraborty and John Etnyre

Tech Topology Conference
December 6, 2019

Legendrian knots in $(\mathbb{R}^3, \xi_{std})$

• A standard contact structure on \mathbb{R}^3 is a plane field $\xi = \ker dz - y dx$

Legendrian knots in $(\mathbb{R}^3, \xi_{std})$

• A standard contact structure on \mathbb{R}^3 is a plane field

$$\xi = \ker dz - ydx$$

• A Legendrian knot is a knot tangent to the contact structure.

Legendrian knots in $(\mathbb{R}^3, \xi_{std})$

• A standard contact structure on \mathbb{R}^3 is a plane field $\xi = \ker dz - y dx$

A Legendrian knot is a knot tangent to the contact structure.

Classical invariants

Thurston-Bennequin invariant
 Contact framing - Seifert framing

Classical invariants

Thurston-Bennequin invariant
 Contact framing - Seifert framing

• Rotation number A winding number of a tangent field with respect to a trivialization of $\xi|_{\Sigma}$

Classical invariants

Thurston-Bennequin invariant
 Contact framing - Seifert framing

- Rotation number A winding number of a tangent field with respect to a trivialization of $\xi|_{\Sigma}$
- A knot is called Legendrian simple if its Legendrian isotopy classes are determined by Thurston-Bennequin and rotation numbers.

Mountain range

Right-handed trefoil

Mountain range

• Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

• Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

• (Etnyre-Honda) If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p,q)

 Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

- (Etnyre-Honda) If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p,q)
- (Tosun) If K is Legendrian simple, then $K_{p,q}$ is also Legendrian simple for $q/p > t\overline{b}(K) + 1$

 Question: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

- (Etnyre-Honda) If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p,q)
- (Tosun) If K is Legendrian simple, then $K_{p,q}$ is also Legendrian simple for $q/p > t\overline{b}(K) + 1$
- (Chakraborty) $\hat{\theta}(T^1) = \hat{\theta}(T^2)$ if and only if $\hat{\theta}(T^1_{p,q}) = \hat{\theta}(T^2_{p,q})$

Main result

Theorem (Chakraborty-Etnyre-M)

• For $q/p>\overline{tb}(K)+1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.

Main result

Theorem (Chakraborty-Etnyre-M)

- For $q/p > t\overline{b}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.
- The mountain range of $K_{p,q}$ is a (p,q)-diamond of the mountain range of K.

Main result

Theorem (Chakraborty-Etnyre-M)

- For $q/p > t\overline{b}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.
- The mountain range of $K_{p,q}$ is a (p,q)-diamond of the mountain range of K.

Examples

Examples

Idea of Proof

- Put a cable $L_{p,q}$ on a standard neighborhood of L.
- Assume we have a common $L_{p,q}$ on neighborhoods of L and L^\prime

Idea of Proof

- Put a cable $L_{p,q}$ on a standard neighborhood of L.
- Assume we have a common $L_{p,q}$ on neighborhoods of L and L^\prime

Idea of Proof

- There is a smooth isotopy from N(L) to N(L') fixing $L_{p,q}$
- Keep track of the contact structure on N(L) during the isotopy

Thank you!