Cabling Legendrian knots

Hyunki Min
with Apratim Chakraborty and John Etnyre

Tech Topology Conference
December 6, 2019
Legendrian knots in \((\mathbb{R}^3, \xi_{std})\)

- A standard contact structure on \(\mathbb{R}^3\) is a plane field
 \[\xi = \ker dz - ydx\]
Legendrian knots in \((\mathbb{R}^3, \xi_{std})\)

- A **standard contact structure** on \(\mathbb{R}^3\) is a plane field
 \[
 \xi = \ker dz - ydx
 \]
- A **Legendrian knot** is a knot tangent to the contact structure.
Legendrian knots in \((\mathbb{R}^3, \xi_{std})\)

- A standard contact structure on \(\mathbb{R}^3\) is a plane field
 \[\xi = \ker dz - ydx \]
- A Legendrian knot is a knot tangent to the contact structure.
Classical invariants

• Thurston-Bennequin invariant
 Contact framing - Seifert framing
Classical invariants

• Thurston-Bennequin invariant
 Contact framing - Seifert framing

• Rotation number
 A winding number of a tangent field with respect to a trivialization of $\xi|_\Sigma$
Classical invariants

• Thurston-Bennequin invariant
 Contact framing - Seifert framing

• Rotation number
 A winding number of a tangent field with respect to a trivialization of $\xi|_{\Sigma}$

• A knot is called **Legendrian simple** if its Legendrian isotopy classes are determined by Thurston-Bennequin and rotation numbers.
Mountain range

\[r = \begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 \\
\end{array} \]

\[tb = 1 \]

Right-handed trefoil
Mountain range

\[r = \begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 \\
\end{array} \]

\[tb = 1 \]

\begin{align*}
0 \\
-1 \\
\end{align*}

Right-handed trefoil

\[r = \begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 \\
\end{array} \]

\[tb = 1 \]

\begin{align*}
0 \\
-1 \\
\end{align*}

\[m5_2 \]
Legendrian cables

• **Question**: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?
Legendrian cables

• **Question**: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

• **(Etnyre-Honda)** If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p, q)
Legendrian cables

• **Question**: If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

• *(Etnyre-Honda)* If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p, q)

• *(Tosun)* If K is Legendrian simple, then $K_{p,q}$ is also Legendrian simple for $q/p > \bar{tb}(K) + 1$
Legendrian cables

• **Question:** If the classification of Legendrian knots of a given knot type is known, is it possible to classify Legendrian knots of its cables?

• **(Etnyre-Honda)** If K is Legendrian simple and uniformly thick, then $K_{p,q}$ is also Legendrian simple for any (p, q)

• **(Tosun)** If K is Legendrian simple, then $K_{p,q}$ is also Legendrian simple for $q/p > t_b(K) + 1$

• **(Chakraborty)** $\hat{\theta}(T^1) = \hat{\theta}(T^2)$ if and only if $\hat{\theta}(T^1_{p,q}) = \hat{\theta}(T^2_{p,q})$
Main result

Theorem (Chakraborty-Etnyre-M)
• For \(\frac{q}{p} > \overline{tb}(K) + 1 \), \(K_{p,q} \) is Legendrian simple if and only if \(K \) is Legendrian simple.
Main result

Theorem (Chakraborty-Etnyre-M)

- For $q/p > \overline{tb}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.
- The mountain range of $K_{p,q}$ is a (p, q)-diamond of the mountain range of K.
Main result

Theorem (Chakraborty-Etnyre-M)

- For $q/p > \bar{tb}(K) + 1$, $K_{p,q}$ is Legendrian simple if and only if K is Legendrian simple.
- The mountain range of $K_{p,q}$ is a (p, q)-diamond of the mountain range of K.

\[p \cdot r \]
\[pq - |tp - q| \]
Examples

\[r = \begin{array}{cccccc} & & & & & \\ & -2 & -1 & 0 & 1 & 2 \\ & & & & & \end{array} \]

\[tb = 1 \]

\[m_{5,2} \]
Examples

\[r = \begin{array}{cccccc}
 \text{-2} & \text{-1} & 0 & 1 & 2 \\
 t_b = 1 & & & & &
\end{array} \]

\[r = \begin{array}{cccccc}
 \text{-2} & \text{-1} & 0 & 1 & 2 \\
 t_b = 5 & 4 & 3 & & &
\end{array} \]

\[m_{5_2} \]

\[(2,3)\text{-cable of } m_{5_2} \]
Idea of Proof

• Put a cable $L_{p,q}$ on a standard neighborhood of L.
• Assume we have a common $L_{p,q}$ on neighborhoods of L and L'.
Idea of Proof

• Put a cable $L_{p,q}$ on a standard neighborhood of L.
• Assume we have a common $L_{p,q}$ on neighborhoods of L and L'
Idea of Proof

• There is a smooth isotopy from $N(L)$ to $N(L')$ fixing $L_{p,q}$
• Keep track of the contact structure on $N(L)$ during the isotopy
Thank you!