The contact mapping class group of lens spaces

Hyunki Min MIT/UCLA

July 7, 2022

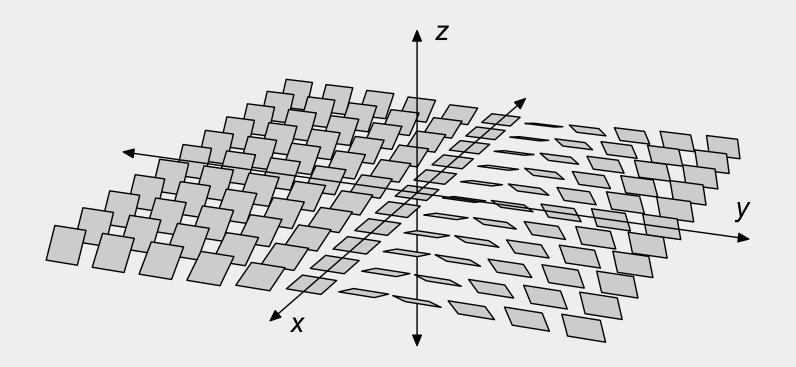
Definitions

ullet A contact form of a 3-manifold M

• A contact structure of α

Examples

• The standard contact structure on \mathbb{R}^3



The standard contact structure $(\mathbb{R}^3, \xi_{std})$

Definitions

- A strict contactomorphism
- A coorientation preserving contactomorphism
- A coorientation reversing contactomorphism

Examples

- $\alpha_1 = dz ydx$, $\alpha_2 = dz + xdy$
- coorientation preserving contactomorphism

coorientation reserving contactomorphism

Today

- We only consider coorientation preserving self contactomorphisms
- We focus on contact structures, not contact forms
- Strict contactomorphisms depend on the choice of a contact form.
- Coorientation reversing contactomorphisms are confusing.

Definitions

• The group of contactomorphism : $\operatorname{Cont}(M,\xi)$

• The contact mapping class group: $\pi_0(\operatorname{Cont}(M,\xi))$

Exotic phenomena

• $i: Cont(M, \xi) \to Diff_{+}(M)$

• An exotic contactomorphism : $\ker i_* \neq 0$

Exotic phenomena

- $(S^1 \times S^2, \xi_{std})$
- f: a Dehn twist about $\{p\} \times S^2$
- (Gompf) $f^n \sim f^m$ if $m \neq n$

Almost nothing is known

General strategy

- Fix a submanifold
- Determine the contact mapping class group of the complement

General strategy

• (S^3, ξ_{std})

02.

Lens spaces

Main theorem

$$\pi_0(\operatorname{Cont}(L(p,q),\xi_{\mathit{std}})) = \begin{cases} \mathbb{Z}_2 & p \neq 2 \text{ and } q \equiv -1 \, (\operatorname{mod} p) \\ \mathbb{Z}_2 & q \not\equiv 1 \, (\operatorname{mod} p) \text{ and } q^2 \equiv 1 \, (\operatorname{mod} p) \end{cases}$$
 otherwise

Strategy

- Classify Legendrian rational unknots in L(p,q) rational unknots: core of a Heegaard torus
- Perturb a contactomorphism to fix a neighborhood of a Legendrian rational unknot
- Determine the contact mapping class group of the complement.

Standard contact structures on L(p,q)

•
$$S^3 \subset \mathbb{C}^2$$
 $\alpha_{std} = x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2$

•
$$L(p,q) = S^3/\mathbb{Z}_p$$
 $(z_1, z_2) \mapsto (e^{2\pi i/p} z_1, e^{2\pi q i/p} z_2)$

• $lpha_{std}$ is invariant under the \mathbb{Z}_p action obtain an induced contact form $lpha_{std}$ on L(p,q)

Standard contact structures on L(p,q)

- Also, obtain an induced contact form $-\alpha_{std}$ on L(p,q)
- (Giroux, Honda) On L(p,q), there are 2 universally tight contact structures if $q\not\equiv -1\pmod p$ 1 universally tight contact structure if $q\equiv -1\pmod p$
- $\xi_{std} \nsim \xi_{std}$ if and only if $q \not\equiv -1 \pmod{p}$

Diffeomorphisms on L(p,q)

•
$$\sigma: L(p,q) \to L(p,q)$$
 $(z_1,z_2) \mapsto (z_2,z_1)$ well defined if and only if $q^2 \equiv 1 \pmod{p}$

•
$$\tau: L(p,q) \to L(p,q) \quad (z_1, z_2) \mapsto (\overline{z}_1, \overline{z}_2)$$

Contactomorphisms on L(p,q)

• $\sigma^*(\alpha_{std}) = \alpha_{std}$ coorientation preserving

• $\tau^*(\alpha_{std}) = -\alpha_{std}$ coorientation reversing

The mapping class group of L(p,q)

$$\pi_0(\mathrm{Diff}_+(L(p,q))) = \begin{cases} 1 & p = 2 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \cong \langle \sigma, \tau \rangle & p \neq 2, \, q \not\equiv \pm 1 \text{ and } q^2 \equiv 1 \, (\bmod \, p) \\ \mathbb{Z}_2 \cong \langle \tau \rangle & \text{otherwise} \end{cases}$$

• Weinstein manifold

Contact Morse function

• It is useless

Characteristic foliation

• (Giroux) can perturb a surface to have a Morse+ characteristic foliation

- (Giroux) We can perturb a contact structure on $\Sigma \times [0,1]$ so that
 - $(\Sigma \times \{t\})_{\xi}$ are Morse+ except for finite t_1, \ldots, t_n
 - $(\Sigma \times \{t_i\})_{\xi}$ are Morse
 - $\Sigma \times [t_i \epsilon, t_i + \epsilon]$ is contactomorphic to a canceling pair of 1-and 2-handles.

- (Colin) Giroux's theorem holds for a 1-parametric family of embedded surfaces in any contact 3-manifold.
- Still hard to use

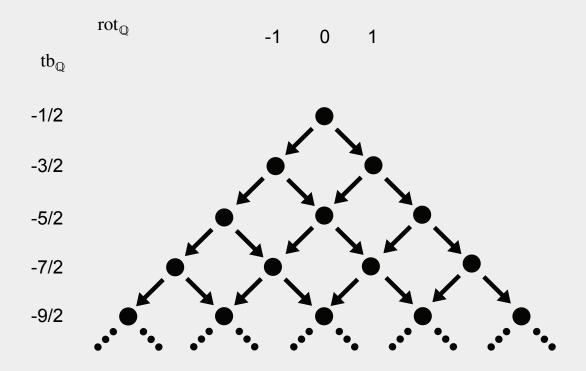
Contact mapping class group of $S^1 \times D^2$

- Universally tight + ϵ condition
- extremal relative Euler class on a meridian disk
- Any two meridian disks are contact isotopic

Contact mapping class group of $S^1 \times D^2$

Fix a meridian disk

Reduce the problem to a ball



Legendrian rational unknots in $(\mathbb{RP}^3, \xi_{std})$

Contact mapping class group of \mathbb{RP}^3

- $\bullet\,$ (Bonahon) any contactomorphism f is smoothly isotopic to the identity
- $L\operatorname{and} f(L)$ have the same $\operatorname{tb}_{\mathbb Q}\Rightarrow L\operatorname{and} f(L)$ are Legendrian isotopic
- Contact isotopy extension theorem $\Rightarrow f$ fixes a neighborhood of L
- The complement of N(L) is a universally tight solid torus

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>