Non-loose torus knots

Hyunki Min MIT

G & T Workshop Turkey December 8, 2021

01.

Existence of non-loose knots

Question

• Which knot $K \subset M$ admits non-loose Legendrian representatives?

Theorem

• (Etnyre-M-Mukherjee) Let M be an irreducible manifold.

 $K \subset M$ admits a non-loose Legendrian representative

K is not contained in 3-ball or M admits a tight contact structure.

Idea

- (Colin) Let (M, ξ) is a contact 3-manifold. If $M = M_1 \cup_{S^2} M_2$ and $\xi|_{M_1}, \xi|_{M_2}$ are tight, then ξ is tight.
- If M does not admit a tight contact structure, then $M \setminus B^3$ does not admit tight contact structure.
- $K \subset B^3 \subset M$ is always loose.

Corollary

- Any knot $K \subset S^3$ admits a non-loose Legendrian representative.
- Any knot $K \subset \Sigma(2,3,-5)$ contained in a ball does not admit a non-loose Legendrian representative.

02.

Non-loose · · · · torus knots

Classification of Legendrian knots

- Goal: classify non-loose Legendrian knots up to contactomorphism.
- $\pi_0(Cont(S^3, \xi_i)) \neq 0$

Invariants of non-loose knots

- (extended) classical invariants: $(tb, rot, torsion, \xi_i)$
- *tb*: Thurston-Bennequin invariant
- rot: rotation number
- torsion: # of boundary-parallel Giroux torsions in $S^3 \setminus N(K)$
- ξ_i : the ambient contact structure

Giroux torsions

- Giroux torsion i $(T^2 \times I, \cos(2i\pi t) dx \sin(2i\pi t) dy)$
- Giroux torsion $i + \frac{1}{2}$ $\left(T^2 \times I, \cos\left((2i+1)\pi t\right)dx \sin\left((2i+1)\pi t\right)dy\right)$

Mountain range

- Fix torsion and ξ_i
- *x*-coordinate: *rot*
- y-coordinate: tb
- Each dot represents a non-loose Legendrian representative.
- Arrows indicate stabilizations

Right-handed trefoil in (S^3, ξ_{std})

Classification of Legendrian knots

• Classification = completing the mountain range.

Previous results

Unknot (Eliashberg-Fraser)

- Every non-loose unknot is contained in (S^3, ξ_1) and has 0 torsion.
- For $i \geq 1$, there exists a family of non-loose Legendrian unknot $\{L_i^{\pm}\}$ with

$$(tb, rot, torsion) = (i, \pm (i-1), 0)$$

Non-loose unknots in $(S3, \xi_1)$

Previous results

Left-handed trefoil (Geiges-Onaran)

- classified non-loose left-handed trefoils with torsion 0 and tb < -6 and tb=-5
- For n < -6, there exist two non-loose Legendrian representatives with $tb = n, rot = \pm (n-1)$

Non-loose LHT in (S^3, ξ_2) with torsion O

Previous results

Right-handed trefoil (Geiges-Onaran)

- Classified non-loose right-handed trefoils with 0 torsion and tb = 7.
- There exist four non-loose Legendrian representatives with $rot = \pm 4, \pm 8$.

Non-loose RHT with tb=7 and torsion 0

Previous results

Negative torus knots (Matkovic)

- # of non-loose (p,q)-torus knot with tb < pq and torsion 0 (q < 0)
 - = # of tight contact structures on $S_{tb-\frac{1}{2}}^{3}(T_{p,-q})$

Theorem

• (Etnyre-M-Mukherjee) classified non-loose torus knots

Non-loose LHT in (S^3, ξ_2) with torsion = 0

Non-loose LHT in (S^3, ξ_2) with torsion i > 0

Non-loose LHT in (S^3, ξ_1) with torsion i+1/2

Non-loose RHT in (S^3, ξ_0)

Non-loose RHT in (S^3, ξ_{-1})

Non-loose RHT in (S^3, ξ_1) with torsion O

Theorem (cont.)

- There exist m(p,q) non-loose torus knots with tb=pq with torsion 0
- $m(p,q) = \#Tight\left(S^1 \times D^2, \frac{q}{p}\right) \cdot \#Tight\left(S^1 \times D^2, \frac{p}{q}\right)$

A decomposition of S^3

Surgery diagram for tb=pq

Two types of non-loose Legendrian

- d(L) = minimum intersection number of L and an overtwisted disk
- inconsistent Legendrian: d(L) = 1
- consistent Legendrian: d(L) > 1

Theorem

Let L be a non-loose negative torus knot. If L is

- 1. inconsistent, then
 - it can have any contact framing (tb)
 - adding a torsion, it is still non-loose.
- 2. consistent, then
 - $t\bar{b} = pq$,
 - adding a torsion, it becomes loose.

Non-loose T(5,-8) in ξ_2 with torsion O

Theorem (cont.)

Let L be a non-loose positive torus knot. L is either

- 1. inconsistent, or
- 2. consistent, or
- 3. cables of non-loose unknot (ξ_1) .

RHT as (2,3) cable of the unkot

Applications

- (Etnyre-M-Tosun, work in progress) Tight contact structures on $S_r^3 \left(T_{p,q} \right)$
- $Tight\left(S_r^3(T_{p,q})\right) = \text{surgery from } T_{p,q} \subset (S^3, \xi_{std})$ + surgery from non-loose $T_{p,q}$

Thank you!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**